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Dusty-gas flow in a laminar boundary layer over a body with a curved surface is 
considered. In addition to Stokes drag, particles experience a centrifugal force and lift 
which is due to fluid shear. The body size L is taken to be much greater than the 
relaxation length of the particle velocity due to the action of Stokes drag, Ast, and is 
of the same order as or less than the relaxation length due to the action of lift, Asu. 
Using an asymptotic approach, momentum equations for the particle phase are 
reduced to an algebraic equation accounting for the variation of lift coefficient with the 
shear and the slip velocity. Particle velocity and density are computed for the 
axisymmetric boundary layer in the neighbourhood of the front stagnation point of a 
blunt body of size much less than Asu. It is shown that downstream of some point on 
the wall (the separation point) particle normal velocity becomes non-zero. As a result 
particle streamlines turn away from the wall, and a particle-free zone arises. The cause 
of separation is the lift effect; the centrifugal force cannot make the particle flow 
separate. This conclusion is extended to the case when L - Ass. The position of 
separation for the flow past a sphere is evaluated as a function of the ratio of its radius 
r’ and relaxation length. Dust flow ceases to separate when this value is greater than 
a critical value r:/hsa z 29.2. 

1. Introduction 
In most previous publications the problem of a dusty-gas boundary layer (Marble 

1962; Saffman 1962; Singleton 1965; Osiptsov 1980; Wang & Glass 1988) was studied 
on the assumption that particles are under the action of a drag force only. However 
they also experience a lift which is due to fluid shear. This force is small compared with 
the longitudinal Stokes drag, but it can be of the order of the normal drag, and as a 
result the particle normal velocity can differ significantly from that of the fluid. 

The effect of lift (it is also called ‘Saffman’s force’ in Russian papers) on particle 
motion was considered for dusty-gas flow in laminar boundary layer over a flat plate 
by Otterman & Lee (1970) and Osiptsov (1988). The lift force coefficient was 
anticipated to be equal to the limiting value 6.46 obtained by Saffman (1965), but its 
dependence on the relation between the two particle Reynolds numbers based on slip 
velocity and on fluid shear (Asmolov 1990; McLaughlin 1991) was not taken into 
account. Dusty-gas flow in a boundary layer is assumed to have a single longitudinal 
length scale which is equal to the particle velocity relaxation length under the action 
of Stokes drag, Ast. The lift force results in particle migration toward the plate at a 
distance from the leading edge of the order of hst, while far downstream its influence 
is negligible. 

It was shown for the flow over a flat plate that the asymptotic approach requires the 
introduction of two distinguishing relaxation length scales, A,, and Asa, that correspond 
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to the relaxation of the streamwise and normal velocity of particles, with A,, being 
much greater than A,, (Asmolov 1992). The leading-order streamwise velocity of 
Particles at a distance from the leading edge of the order of A,, is equal to that of the 
gas, i.e. particle flow in the streamwise direction is frozen in the fluid. An asymptotically 
small slip velocity is sufficient to make the lift comparable with the normal drag. Then 
the leading-order normal velocity of the particles differs from that of the gas. 
Momentum equations for the dispersed phase can be transformed to a single algebraic 
equation accounting for the variation of the lift-force coefficient c with the shear and 
the slip velocity. Dusty-gas flow in a boundary layer over a wedge was also considered 
in the framework of the asymptotic method (Asmolov 1993h). In this case the particle 
phase experiences a positive lift force. As a result its zeroth streamline turns away from 
the wall, and a particle-free zone adjacent to the wall arises. 

The effect of lift force has been investigated previously only for flows over plane 
surfaces. In examining particle motion over a blunt body, when the boundary-layer 
equations are written in a coordinate system coupled with the body surface, one more 
force in addition to drag and lift should be accounted for - the centrifugal force. This 
more complicated flow configuration can also be considered on the basis of the method 
outlined when the characteristic size of streamlined body L is much greater than Ast. 

The outer inviscid problem for the case cr < 1, where (T = A,,/L is the Stokes 
number, was studied using an asymptotic approach by Michael (1968). For the 
incompressible flow of dusty gas past a sphere it was concluded that a dust-free layer 
adjacent to the sphere exists because of the action of the centrifugal force. However, 
as shown in the present paper this force can result in the particle density near the wall 
being asymptotically small but non-zero. i.e. it cannot force the dust flow to separate 
from the wall. The real cause of separation is the lift. 

Similar to the Stokes number, a new dimensionless parameter can be introduced: 
0 = A,,/L. The effect of lift on particle motion in a boundary layer is significant when 
# is of order of unity or greater. The incompressible axisymmetric flow in the 
neighbourhood of the front stagnation point of a blunt body for 0 9 1 is considered 
in more detail in §§4-6. In this case all normal forces acting on the particle are of the 
same order. This makes it possible to estimate the parts played by the different forces 
in particle motion and separation. 

For simplicity the mass concentration of the dispersed phase is assumed to be small. 
Then the changes in the gas flow due to the particles can be neglected, and the problem 
can be solved using the momentum equations for the particle phase only. These latter are 
reduced to an algebraic equation. The particle normal velocity is evaluated from the 
numerical solution of this equation. Upstream of some point on the wall x, (the 
separation point) it equals zero close to the body surface while downstream the normal 
velocity becomes non-zero. For this reason particles moving along the wall turn away 
from it at x > xs, and separation of the dust flow occurs. Particle streamlines and the 
density distribution are calculated by integrating the equations of particle motion. The 
density in the vicinity of the boundary of the particle-free zone is several times greater 
than the free-stream value, and, hence, the particles are clustered near this boundary. 

An asymptotic approach is extended to the case of arbitrary 8 in $7. Separation of 
the particle phase again may arise owing to shear lift force only. As an example, the 
position of separation for boundary-layer flow of dusty gas past a sphere is evaluated 
as a function of the ratio of its radius and normal velocity relaxation length. Dust flow 
ceases to separate when this value is greater than the critical value ri /Akyg cs 29, 2. 
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2. Lift force 
Bretherton (1962) showed that at small Reynolds number no lateral force can be 

deduced on the basis of the creeping-flow equations whatever the undisturbed velocity 
profile. Small inertia effects must be taken into account to calculate this force. When 
the three Reynolds numbers based on fluid-particle translational velocity difference 
(u’ - .a), fluid shear au’/C?y’ and particle angular velocity SZ satisfy the following 
respective relations : 

it was found using the method of matched asymptotic expansions that the lift force is 
(Saffman 1965) 

F,, = C ~ ( O I ,  Y )  RY2pa(u’-~L) ,  

where a = f R, Rill2. (2.1) 

Here v and p are kinematic and dynamic viscosities of the gas, a is the particle radius, 
and Y is the distance between the particle and the wall scaled on the length of the outer 
region 1, = uR~l i z .  Parameter a characterizes the ratio of the two parts of the inertial 
term in the momentum equation corresponding to uniform (Oseen) and shear 
(Saffman) undisturbed flow. Its sign is taken to be the same as that of slip velocity 
u’ - ub. Equation (2.1) can be rewritten in terms of the dimensional slip velocity and the 
fluid velocity gradient as 

Saffman (1965) found a limiting value of the lift force coefficient of cF = 6.46 in 
unbounded shear flow for the case a+O. For arbitrary a in unbounded flow the 
coefficient 

was calculated independently by Asmolov (1990) and McLaughlin (1991). For 
arbitrary distance Y lift was evaluated by Asmolov (1990) and later by McLaughlin 
(1993). 

When particle motion in a laminar boundary layer is considered, the length scale of 
outer region 1, is estimated as 

c(a) = cF(a, Y+ a) (2.2) 

where 
VL 

Re, = ~ 9 1 
U 

Here V is a characteristic gas velocity. It can be seen from (2.3) that for any 
longitudinal length scale of the boundary layer L its thickness 6 = L is much 
greater than 1,. From this two important conclusions follow. First, the wall effect is 
significant only in a thin sublayer with the thickness 1,. Secondly, the undisturbed 
flow past a single particle in the major portion of the boundary layer excluding this 
sublayer can be treated as unbounded simplc shear flow, and the lift coefficient (2.2) 
can be taken to describe particle motion. 

The ~ ( a )  computed by Asmolov (1990) and McLaughlin (1991) coincide within the 
accuracy of the calculations in the interval 0 d 1011 d 3. The lift coefficient decreases 
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FIGURE 1. Comparison between the lift force coefficients computed by Asmolov (1990) (O), 
McLaughlin (1991) (a) and interpolations by Asmolov (1992) (solid line), and Mei (1992) (dashed 
line). 

monotonically from the limiting value c(0) = 6.46 to 4 3 )  = 0.58. It changes sign for 
la1 > 4.5 and rapidly approaches zero, i.e, ~ ( a )  - a-5 loga as a+ GO (McLaughlin 
1991). Two interpolations of c(a) have been proposed: by Asmolov (1992) 

~ ( a )  = 6.46 (1 + 0.581 a'- 0.439 IaI3 + 0.203 a4)-l, 0 < la1 < 3 ,  (2.4) 

and by Mei (1992) 

c(a) = 1.936 ( 1 + tanh [2.5(0.19 -log,, lal)]) x (0.667 + tanh [6(1a1-'-0,32)]}, 

0.05 < la1 d 10. (2.5) 
The lift coefficients derived from (2.4) and (2.5) are shown in figure 1. Both 

interpolations agree closely with numerical values in the interval where c is of order of 
unity. Equation (2.4) deviates from the calculated coefficient at la1 > 3 .  Nevertheless we 
use this expression below for arbitrary a since the magnitude of lift at la1 > 3 is very 
small, and its effect on particle motion can be neglected. 

3. Length scales and governing equations 

has a uniform upstream velocity V and particle mass density 
Consider dispersed-phase flow which consists of particles of the same radius a and 

- 4  3 
PprJ  - P p o :  a Ps.  

which is much less than that of the gas, p. Here n p  is the number density of the particles, 
ps is the mass density of their material. 
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A critical question for the problem being discussed is the choice of a characteristic 
length of the flow. There are the time and length (Marble 1962; Saffman 1962) 

T S t  = gp,a2/pu, Ast = 7.9 (3.1) 

of particle velocity relaxation under the action of Stokes force. Flow in a boundary 
layer over a flat plate has no length scale of the variation of fluid velocity in the outer 
inviscid region, and for this reason A,, is customarily taken as the characteristic length 
for dusty-gas flow. The Reynolds number based on this length is assumed to be the 
single asymptotic parameter 

Re,, = % $ 1. (3.2) v 

Taking account of (3.1), equation (3.2) can be rewritten in terms of the mass densities 
ratio and the particle Reynolds number defined as 

P Va P=- ,  R -- 
P* v -  v . "  

in the following form: 
Re,, = $R2,/T1 9 1. (3.3) 

It can be easily seen that (3.3) implies the existence at least one more asymptotic 
variable, namely 

Below, both parameters p and R;' are taken to be asymptotically small. Equation (3.4) 
means that to use an asymptotic approach properly it is necessary to estimate the values 
of the different forces and migration velocity more carefully. Assuming the lift 
coefficient to be of the order of unity one can easily obtain 

Fgt(ASt) - ,ua(v'-ok) - ,uaVRe;,1I2 - paVR;1/7112, 

Therefore, if either of the inequalities (3.4) are satisfied, normal drag is less than lift at 
distances from the leading edge of the order of As,. From this it follows that the two 
normal forces are comparable far downstream where the streamwise slip velocity is 
small. A new length scale A,, different from A,, should be introduced. For particle 
motion in a boundary layer over a flat plate was defined in Asmolov (1992) as 

p < 1  or (and) RG1 -4 1. (3.4) 

F,,(A,,) - pa(u'-uk) Rii2(hst) - ,uaVR, - paVR, 112 /7 114 . 

= 3.56 x 10-3(V/p)Sa4p513p~i3. (3.5) 

As,, and the corresponding Reynolds number Res,, p ,  which follows from ( 3 3 ,  are 
much greater than A,, and Re,,, since 

- ,&'I3 R2 v h S t  9 h,,? Resa,p = - p-413 Rt, $ Re,,. (3-6) 

At distances of the order of A S a , p  the two normal forces are of the same order so that 

F~, (Ahy , , J  - pad - /haVRe;i!2, N ,uaVR;Zp2'3, 

V 

2 21s 
~ s u ( ~ s u ,  p )  - P4u' - U;) R;12(As,, - pa VR; P > 

since 

and the migration velocity is of the order of the normal velocity of the gas. Length 
scales hst and can be interpreted respectively as the relaxation lengths of the 
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streamwise up and normal up velocities. Equations (3.6) provide the basis for the 
asymptotic description of the particle motion. Momentum equations for the disperse 
phase within the framework of this asymptotic approach can be reduced to a single 
algebraic equation that accounts for the variation of the lift force coefficient c with the 
shear and slip velocity. 

Describing particle motion in a boundary layer over a body with a curved surface 
is a more complicated problem since one more length scale (a characteristic size of the 
body L) and one more force (centrifugal force) must be taken into account in addition 
to above-listed lengths and forces. Nevertheless, an asymptotic approach can be 
successfully used to solve such a problem when the characteristic size of the streamlined 
body L is much greater than A,, or, equivalently, the Stokes number CT = A,,/L 4 1. 

We use a common coordinate system which is coupled with the body surface. The 
x-axis is directed along the surface while the y-axis is normal to it. If the particle motion 
is considered in this coordinate system a centrifugal force arises. Then the dimensionless 
momentum equations for the particle phase can be written as 

where 

(3.74 

(3.76) 

Here the dimensionless variables are introduced in a common way, namely 

where L is a characteristic size of the body, and r’(x’) is its local radius of curvature. 
The velocity field of the gas can be described as unperturbed by the particle motion 
since the particle mass fraction is small compared with unity. 

In most previous investigations primary attention was given to the case when the 
Stokes number CT - 1, i.e. the size of a streamlined body is comparable with the 
relaxation length It was thought that the particle velocity differs from that of the 
gas in this case only. For bodies of larger size the slip velocity is assumed to be small. 
Indeed we have from equation (3.7 a) for streamwise component 

2a2p v 
9 Y P S L  

u-up  - CTU 4 1 when 0- = 4 1. 

The last term on the right-hand side of (3.76) that corresponds to the lift force and is 
proportional to slip velocity can be estimated in view of (3.8) as 

0-c~‘ - R, % 1 when Re, 9 1 and R, 9 1. (3.9) 
Therefore this term is large even for a small slip velocity. Assuming that v- v p  - 1 the 
term corresponding to normal drag can be estimated as 

- Re, RF2 p .  (3.10) 

Two terms are comparable when 
ge-1 N q - 1  
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The last equation is valid when Re, - pP4j3 R$. We introduce the relaxation length of 
the normal velocity A,, as the length L that makes 

vc-1 = (J-1, 

or, equivalently, 
%7c 1 -1 R ,  = :Re, RV2 p. 

(3.11 a) 

(3.11 b) 

Denote Re,, as the Reynolds number Re, that satisfies equation (3.1 1 b). This gives 

Re,, = &(7~,8-~’~ R4,. (3.12a) 

Defining a length scale A,, such that ReSa = VA,,/v, one obtains from (3.12a) 

(3.12b) 

Thus in this case the relaxation length A,, differs from that for the flow over flat plate, 
A,,, p ,  only by a numerical coefficient and is again large compared with ASt. It follows 
from (3.9), (3.10) that normal drag increases more rapidly with L than lift. Hence the 
lift effect on particle motion in the boundary layer is significant when L is of order of 
A,, or less. 

What forces will be dominant depends not only on the ratio of L and A,, but also 
on the relation between asymptotic parameters R;l and p. Among all the possible 
cases, we consider in more detail the case when normal drag, lift and centrifugal forces 
are of the same order. Another requirement is that normal slip velocity due to their 
action is of the order of u. At x - 1 we have u - 1, u - 1, and the three terms on the 
right-hand side equation (3.7b) are of the same order when 

ReLpRF2 - - R,. (3.1 3 a) 

In addition, to demonstrate the influence of the variation of the lift coefficient c on the 
characteristic features of particle motion we make the particle Reynolds numbers ratio 
a to be approximately unity. In the view of (3.9) one can obtain 

a - Re;314 p-’ R2, - 1. (3.13b) 

One can easily conclude that three independent parameters, Re,, R,, p, are not 
sufficient to determine (3.13 a, b). The above requirements can be satisfied by letting the 
streamwise velocity be asymptotically small so that u - r < 1. This is valid for the flow 
near the front stagnation point of a blunt body at the distance x - r from the 
stagnation point. In this case the second and third terms on the right-hand side of 
(3.7b) and CL should be re-estimated. The centrifugal force is quadratic in u, lift is 
proportional to u(&.~/L?y)l’~ and, hence, to r3/2.  For a proportional to u ( . ? ~ / a y ) - ~ / ~  we 
have a K + I 2 .  Then (3.13a, b) are rewritten as 

Re, pRi2 N r2 - r5I2 L R V’, (3.14~) 

a - rli2 ReL314p1 R2, - 1. (3.14h) 

Equations (3.14a, b) are satisfied if the main asymptotic parameters are related as 
follows : 

,!3 - ReE112, R, - Reit6, r N Reill‘. (3.15) 

Other asymptotic parameters are 
Re-l/fi - Re-7/‘2 

L ?  I‘ a 

Equation (3.15) means that the characteristic size of a streamlined body is much less 
than A,, since 

19 = A,y,/L - Re,1p-413R~ ,-- Reif3 % I ,  
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where A,, is given by (3.12b). Equation (3.15) defines only the order of 7, not its exact 
value. Hence it can be introduced without loss in generality as 7 = &ll2. 

This last definition does not contradict (3.1 5) .  
The lift force can be evaluated provided that the particle Reynolds numbers R, and 

R, are small. These conditions are satisfied for the above relations between the main 
asymptotic parameters since 

R, - R,rv N < 1, R, - RF7 Re;'i2 - Rei1l3 < 1. 

Thus the use of expressions for the lift given in $2 is justified in this case. It should also 
be noted that relations (3.15) are quite possible in practice. For example, an air flow 
containing water droplets of radius a = 5 x m with the characteristic velocity 
V = 100 m s-l and size of a streamlined body L = 0.2 m at standard conditions 
corresponds to relaxation length A,, z 3 m and the following values of the 
dimensionless parameters : 

Re, % lo6, /3z R, % 30, r M 0.2, 8 z 15, g~ 0.2, e z  0.004. 

The flow in the vicinity of the stagnation point of a body with size much less than 
A,, is the most illustrative case. All the terms corresponding to the various forces in the 
algebraic equation for a derived in the next section are of the same order. This makes 
it possible to estimate the parts played by these forces in particle motion and 
separation. The asymptotic approach is extended in $7 to the general case when ReL, 
R,, /3 are related differently than in (3.15), and some terms can be neglected. 

4. Particle motion near the stagnation point 
The size of the body, L, can be taken without loss in generality to equal the radius 

of the curvature of body surface at the stagnation point r'(O), so that r(0) = 1. 
Introducing new dimensionless variables 

and coefficients 
x = ?-'.X, u = T-IU, up = ?-'Up, 

Rei14 7112 = 2 113 R e , l /2  p-213 R v - 1 ,  = 

K c 

3E 

T~ y = 12 x5I3 /3-'13 RF' IV 1, 

one can rewrite (3.7) as 

aup sup- u-up up-+o --------, ax ay 0- 
(4.1 a) 

Solution of (4.1) is sought in the form 

up = up, + m u p 1  + . . . , u p  = up* + vL'pl + . . .) a = a, + V a l  + . . . . 
The left-hand sides of (4.1 a, b) are asymptotically small compared with the right-hand 
sides. Consequently, the zeroth order of both drag and net transverse force are to equal 
zero. From (4.1 a) one can deduce for the streamwise particle velocity 

up, = u. (4.3) 
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Thus the dispersed phase in the streamwise direction is frozen into the fluid. Such a 
quasi-equilibrium motion of the particles does not imply, however, their leading-order 
normal velocity to be equal to that of the fluid. The term in (4.1) corresponding to lift 
is of order g-2,  and for this reason even a small slip velocity, 

u- up = - fTup, + O(O-’), 

makes it comparable with terms corresponding to normal drag and centrifugal force. 
Therefore knowing Up? one cannot evaluate u p O :  it is necessary to account for the first- 
order streamwise velocity. Collecting the terms of power go in (4.1 a)  and power rP1 in 
(4.1 b) we obtain in view of (4.3) 

au au 
ax ay 

u-+v - = - U p 1 ,  

0 - vpo + - K u2 - C(.,) up, (s;y2 1 = 0. 
Y 

(4.4a) 

(4.4b) 

Up,  and vpo can be expressed, taking account of (4.2) and (4.4) in terms of a0 as 

Substituting (4.5) into (4.4) one can reduce these equations to a single one: 

where 
D U  au au 
-- - u--+v- 
Dt u- ay 

is the streamwise acceleration evaluated along the fluid streamline. The gas velocity 
distribution near the stagnation point is (Schlichting 1968) 

u = iX$’(q), v = - 213 $(q). 
Here q = y’3y, function $(q) is the solution of the Faulkner-Scan equation by virtue 
of the known similarity between boundary-layer flows near the stagnation point and 
over a wedge, and Q’(q) denotes its derivative. Finally, omitting henceforth subscript 
0, one can rewrite (4.6), (4.5) as 

x(&) = a Q K  4 + Z(X 42 (4.7) 

where 
x = C(CI) CI, Q = A‘-’’’ q(q), Z = - yXP1 ~ ( r l )  - ~ X p ( q ) ,  

All functions q, s, p depending on q are positive ones. 
Thus the particle velocity field can be evaluated from the solution of the algebraic 

equation (4.7). Similar equations were obtained for dusty-gas flow over a flat plate and 
a wedge by Asmolov (1992, 1993b). The distinction of (4.7), (4.8) is the terms 
proportional to K, corresponding to the centrifugal force. The main features of this 
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equation such as non-uniqueness of solution and peculiarities of distributions a and v?, 
near the wall are due to function x(a) on its left-hand side. For this reason they are just 
the same for the problem in question as for a flow over a wedge. 

5. Uniqueness and matching condition 
Because of the nonlinearity of equation (4.7) governing the quasi-equilibrium 

motion of the particles its solution in the general case is not unique. This conclusion 
is illustrated in figure 2, where the solid line represents the graph of the function x(a) 
on the left-hand side of (4.7). The right-hand side is the linear function aQ + 2 of CI with 
the coefficients Q ,  2 depending on the coordinates X, 7 and the parameters y, K. The 
dashed straight lines 1-3 in figure 2 correspond to y = 1,  K = 2, X = 0.5 and various 
values of 7 .  The roots of (4.7) are located at the intersection of the dashed and solid 
lines. As seen in figure 2 there can be one (point P for 7 = 1.5), two (points 0, N for 
71 = 1.15) or three (points M, L, K for 7 = 0.4) roots depending on X ,  7 .  The roots are 
denoted by aA (points P, N, K), aB (point 0), ac (point M), so that aA > ag > a,. One 
of the roots (in this case aA) exists over the whole boundary layer while the two others 
do not exist for all values of X ,  7. 

A study of the stability of quasi-equilibrium motion to small perturbations of 
particle velocity (Asmolov 1993a) shows that the solution is stable when 

(5.1 a)  

or, equivalently, d;y/da < Q. (5.1 b) 

Thus the solution is stable when the velocity gradient is less than a critical value 
given by 

Equation (5.1 b) means that the inclination of a solid line in figure 2 at the intersection 
must be less than that of dashed line. This is valid for the two extreme roots aA and ac. 
The opposite inequality occurs for the middle root aB. Consequently ag is an unstable 
root, and for this reason it is never established. The instability of this branch can be 
explained as follows. Let the particle normal velocity be slightly perturbed with respect 
to the magnitude v B  corresponding to ag. This results in the increase of not only 
normal drag, but, as follows from (4.4), also of the streamwise slip velocity and lift. If 
dx/dol > Q the increase of the lift due to the small perturbation is greater than that of 
the normal drag, and deviation from vg increases further till the stable branch is 
established. 

Another conclusion following from the stability analysis is that the solution varies 
continuously and remains on the same stable branch during the particle motion until 
its trajectory leaves the region of existence of this branch. Which stable branch 
(a, or ac) describes the real motion of the particle depends on the initial value of its 
velocity. This latter must be evaluated using the matching condition with the outer 
inviscid region. The Stokes force is dominant in this region. This is easily deduced from 
(4.7). In the limit 7 --f CE we have q5' + 0, 9"- 0. Hence the term corresponding to lift, 
which is the cause of the non-uniqueness, is small compared with the right-hand side of 
(4.7). Thus the solution of (4.7) is unique and is given by 

a = aA + yX1/2sy-1 as q+ cc. (5.3) 
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4 

FIGURE Graphic solution of equation (4.7). Solid line is its left-hand si+ and the dashed 
ones are the right-hand side for y = 1, K = 2, X = 0, 5 and various q :  0.4; 1.15; 1.5, lines 1-3 
respectively. 

The same equation can be derived for particles in the immediate vicinity of the 
stagnation point when X+O. In this case (5.3) is valid since right-hand side of (4.7) 
is again large in comparison with the left-hand side in the limit X +  0. Thus the motion 
of particles both on upper and leading edges of boundary layer is described by the 
positive branch aA. This root exists for all X ,  7 since the function Z ( X ,  7) is negative. 
From this it follows that particles continue to move in accordance with the same 
positive branch of the quasi-equilibrium solution, and solution aA is valid everywhere 
in the boundary layer. 

For both of the above limiting cases we can obtain for the normal particle velocity, 
in view of (4.8) and (5.3), 

z l P + z l  when X -  1, y+oo or X+O, y -  1. 

Dust flow is frozen in the fluid in both regions, and for this reason the particle density 
equals its free-stream value. 

In the far downstream region the lift effect is again small, and the centrifugal force 
is dominant since in the limit X-t co the term corresponding to this force in (4.7) tends 
to infinity, being linearly proportional to X ,  while x(a) is finite for any a. Taking 
account of (4.8) one can obtain 

and 
+ K x5I2p 4-l 

Therefore the lift force is small for all limiting cases, and its influence is significant only 
when X- 1, 7- 1. 

It should be noted that the matching problem can be easily solved in the framework 
of this asymptotic method for finite particle content as well. Leading-order velocities 
of the two phases in the outer region are equal and the particle density field is 
homogeneous (Michael 1968). The matching problem is more complicated when the 
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size of a body is assumed to be of order Ast. In this case the slip velocity in outer region 
is finite. To determine the velocity and density of the dispersed phase on the upper edge 
of boundary layer it is necessary to solve the entire outer problem. The sole exception 
is a dusty-gas flow over a flat plate which has homogeneous velocity and particle 
density fields in the outer region. 

6. Separation of particle flow 
Close to the wall both the velocity and acceleration of the carrier gas tend to zero. 

One would expect a and u p  to show similar behaviour in 9. The solution of (4.7) 
given by 

exists for all X. It corresponds to non-slip flow. However, the zeroth solution is not 
always stable yet. The necessary condition (5.1) should be met for (6.1) to be a stable 
branch. We define X ,  as the coordinate of the point where the fluid shear reaches the 
critical value (5.2) calculated for the zeroth solution. As dX(O)/da = c(0) one can 
obtain 

a(X,O) = 0 (6.1) 

and 

Then (5.1) is equivalent to X < X,. Upstream of X ,  fluid shear is less than a critical 
value, and (6.1) is stable. In this region there exists only the zeroth root of (4.7). For 
X > X, this root is not unique and corresponds to the unstable branch ag which can 
be never established. In this case particle motion is governed by the non-zero positive 
branch aA. Therefore because of the lift effect the streamwise slip velocity and, hence, 
particle migration velocity can be non-zero, even though the velocity of the carrier gas 
is zero. 

These features of the distribution a,(X, q) are illustrated in figure 3(a). The 9- 
dependences of a evaluated numerically using Newton’s method for y = 1 ,  K = 2 and 
various values of X are presented by solid lines. For comparison, dependences a(7) 
calculated with neglect of the lift (the term on the left-hand side of (4.7) set to equal 
zero) are plotted by dashed lines. These dependences, in contrast to aA(X,7), are 
quadratic in 9 as q + 0 for all X .  

The particle normal velocity field shows a similar behaviour near the wall. It follows 
from (6.1) and (4.8) that for X < X ,  we have v p  + 0 as 9 + 0, while for X > X,, v,(X, 0) 
is non-zero. The q-dependences of v, calculated from (4.8) are presented by solid lines 
in figure 3 (b) for the same values of y, K, X as in figure 3 (a). Dashed lines represent the 
dependences of the particle normal velocity calculated with neglect of the lift (the 
second term in square brackets in (4.8) set to equal zero). It is seen that the lift effect 
is significant at X > X ,  and near the wall. 

Particles moving along the wall at X < X ,  must move away from it at X > X ,  since 
up@, 0) becomes non-zero. This phenomenon can be treated as the separation of dust 
flow near the stagnation point of the carrier-gas flow. To illustrate it some particle 
streamlines for y = 2, K = 1 are presented in figure 4. The zero streamline plotted by 
the heavy line is the boundary of separation, and a particle-free zone arises to its right. 
It is seen that other streamlines come close to this boundary, and particles are clustered 
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FIGURE 4. Particle streamlines (solid lines) and boundary of the particle-free zone (heavy line) at 
y = 2, K = 1. Dashed lines are the streamlines calculated neglecting the lift. 
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FIGURE 5. Particle density scaled by its free-stream value at y = 2, K = 1 and various distances from 
the stagnation point X =  0.1; 0.2; 0.5; 1; 1.6 (corresponding to curves 1-5) calculated (a) taking 
account of lift and (b) with its neglect. 

near it. It will be recalled that in our analysis there are no particles very close to the 
wall in a thin sublayer with thickness 1, - L Re,314. In this sublayer the wall effect on 
the lift force should be taken into account. Particle motion in this region requires 
special consideration. 

The separation of dust flow and clustering of particles near the boundary of 
separation can also be followed from the calculation of the particle density distribution. 
To evaluate p&Y, 71) two nearby trajectories are plotted. The continuity of the particle 
phase means that for axisymmetric flow the product of the spacing between trajectories, 
tangent velocity, distance from axis of symmetry and particle density is invariant. The 
initial value of this invariant is determined on the upper edge of boundary layer 
(matching condition) where the particle velocity is equal to that of the fluid and the 
density equals its free-stream value pb,. Figure 5(a) shows the 7-dependence of p p  
calculated in this way for y = 2, K = 1 and X = 0.1 ; 0.2; 0.5; 1 ; 1.6 and scaled by pbm. 
The maximum density near the boundary of separation is several times greater than 
unity. 

Separation in the boundary layer occurs because of the action of the lift only. The 
particles at some distance from the wall have finite streamwise velocity, and the 
centrifugal force induces them to move outward from the boundary layer. However, 
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this force decreases quadratically with distance from the wall and, hence, it cannot 
force particles near the wall to separate from it. Particle streamlines calculated with 
neglect of the lift are shown by dashed lines in figure 4. It is seen that dust flow does 
not separate in this case. Particle density distributions evaluated with neglect of the lift 
for the same values of y, K ,  X as in figure 5 (a) are presented in figure 5 (b). p,(X, 0) 
decreases with X but never become zero. 

7. Discussion 
The asymptotic method has been applied above to obtain the particle velocity field 

in the boundary layer for fixed relationships between the main dimensionless 
parameters. A similar approach can be used when these relations are different from 
(3.16). A necessary condition for it to be applicable is that the characteristic size of a 
body L be larger compared with Ast, or, equivalently c -4 1 .  In this case, as follows from 
(3.71, leading order of the streamwise particle velocity equals that of the gas, so that 

u p  = u + r u p l  + O(C2). 

The left-hand side of (3.7b) is small in comparison with the right-hand side. Expressing 
uPl in terms of s1 one can write the leading-order equations as 

(7.1 a) 

(7.1 b) 

A new length scale A,, can be introduced as the length L that makes the 
dimensionless parameters corresponding to the normal drag and centrifugal force 
equal, namely 

= g-'. ( 7 . 2 ~ )  
or, equivalently, 

(7.2 b) 

Denote Reee as the Reynolds number He, that satisfies equation (7.2h). This gives 

= ?Re B L V '  RP2B 

Rece = &T2 R4 IT' (7.3) 

Defining a length scale A,, such that Rece = VA,,/v, one obtains from (7.3) 

A,, = &(V/Pu)3Q4PP;. 

As, < A,, Ace. 

Three length scales, for p < 1 and R;' < 1 ,  are related as follows : 

Since there are no derivatives of particle velocity in (7.11, again we can obtain an 
algebraic equation for s1 similar to (4.6). Eliminating u p  one can reduce (7.1) to 

The particle normal velocity is expressed in terms of gas velocity and 01 as 
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FIGURE 6. Azimuth of the separation point on the sphere as a function of the ratio of its radius 

and normal velocity relaxation length (solid line). Dashed line is that given by (7.10). 

When the particle motion in the boundary layer over a body of size of the order of 
A,, is considered, terms in (7.4) and (7.5) corresponding to centrifugal force can be 
estimated as 

Thus in this case the streamwise acceleration of the gas in (7.4), being of the order of 
unity, is small in comparison with other terms. The ratio of the lift and centrifugal force 
depends on the relationships between /l and R;l. These forces are, from (7.4) and (7.6), 
of the same order when R, - /TlJ3. In this case we have from (7.4) and (7.5) a - 1 and 
v p  ,T1I3. Thus the joint action of the two normal forces results in the particle normal 
velocity being asymptotically large compared with that of the gas. Particle density is 
asymptotically small in comparison with the free-stream value. However, a particle- 
free region again may arise owing to lift only. By analogy with $6 one can deduce from 
(7.4), (7.5) that the zeroth solution is unstable, and, hence, non-zero solutions for a and 
0 as y+O occur in the region where the fluid shear is greater than its critical value 
given by 

(Asa/Ace)-1’2 - p 1 / 3  >> 1. (7.6) 

? 

The separation of dust flow occurs at the point on the wall where the fluid shear reaches 
a critical value. Therefore the separation point x,? can be evaluated from the equation 

As an example, it is useful to calculate the position of separation for the boundary- 
layer flow of dusty gas past a sphere for arbitrary L/A,,. Using an approximate 
solution (Schlichting 1968) the gas shear for this problem can be written as 

au(x’o) - .\i3~”(0)(x-0.3925x3+0.0421x5-0.0259x7). (7.9) 
aY 

Here x is scaled by the radius of the sphere Y’. Equation (7.8) can be easily solved 
numerically. The calculated value of the azimuth of the separation point introduced by 
q5 = 180°x,/n as a function of 0-‘ = r’/hs, is presented in figure 6 by solid line. When 
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the separation occurs in the vicinity of the stagnation point, its position can be 
estimated by rewriting (6.2) as 

“J = - 2 4 0 ) - ~ / ~  (q2 x o , 1 2  (A;a)l’z __ . 
3d3$”(0) A,, 

(7.10) 

Function $(&I) following from (7.10) is shown by the dashed line, and is obtained for 
the case when the body size is small compared with the normal velocity relaxation 
length. It is seen however in figure 6 that this approximation agrees well with solution 
following from (7.9) up to r’/hsa z 10. 

When the radius of the sphere is reasonably large, nowhere on the surface does the 
fluid shear reach the critical magnitude given by (7.7). In this case dust flow does not 
separate. The critical regime when separation still takes place obviously occurs if the 
critical fluid shear is reached at the point where the shear is maximum. Performing the 
differentiation of (7.9) with respect to x one can easily obtain that the coordinate and 
azimuth ofmaximum shear are x, x 1.01 and $c x 57,8”. Then we have from (7.8) that 
the critical radius P, x 29.2, or in dimensional form 

ri x 29.2A,, w 0.0784 ( V/p)3a4p513 p4d3. 

It should be noted that the position of the separation point is dictated only by the 
ratio L/h,, and does not depend on the relationships between /3 and R;’. This 
remains valid even for R, 4 ,!T1I3 when over a major portion of the boundary layer 
the centrifugal force is dominant. In this case the lift effect on particle motion is 
significant at x > x, in a thin sublayer near the wall with thickness RY2 ,!T1l6 and again 
forces the dust flow to separate. 
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